
BeamDocs 3335

Analysis of beam-based measurement of absolute phase jitter

between an accelerating structure and a relativistic electron bunch
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We describe and analyze a beam-based technique for precisely measuring the absolute

phase jitter between the electromagnetic field established in an accelerating module and

a relativistic electron bunch being accelerated by this module. The performance of the

proposed beam-based method is numerically explored using, as an example, the International

Linear Collider (ILC) test accelerator currently in construction at Fermilab.

I. INTRODUCTION

The International Linear Collider (ILC) along with several on-going or proposed accelerator-

based light sources incorporate superconducting accelerating structures with unprecedented

requirements on time and energy stability. For instance, the currently envisioned ILC bunch

compression system, downstream of the electron and positron damping rings, calls for an absolute

root mean square (rms) phase jitter between the beam and the cavity’s electromagnetic field

of less than 0.25◦ (at 1.3 GHz, or less than 150 fs), while the specified maximum relative field

amplitude jitter should be 0.07% [1]. Several facilities worldwide are being constructed and/or

operated to develop and characterize low level radio-frequency control systems capable of meeting

the aforementioned specifications [3]. Measuring such a jitter is a challenging task especially when

accounting for other possible sources of jitter upstream of the system to be characterized. The

transient beam loading method can provide a rough estimate of the phase between the beam

and the cavity’s field (with 1◦ accuracy) but requires high charge bunches [2]. In this Note

we explore a technique that can be used to measure the phase jitter while operating the ac-

celerator with nominal conditions (beam structure charge and set-point of the accelerating module).
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We first detail the proposed procedure and develop a one-dimensional model of the longitudinal

beam dynamics to quickly estimate the impact of various sources of jitter in the beam-line down-

stream of the to-be-tested accelerating module. We investigate the practical implementation of the

method and its performances using, as an example, the ILC test accelerator (ILCTA) currently in

construction at Fermilab [4]. We also address possible limitations coming from other sources of

jitter (e.g. charge jitter, long range wakefields) and finally consider instrumental errors.

II. PROPOSED TECHNIQUE

We consider the problem of measuring the phase jitter between an electron bunch and the

electric field established in an accelerating structure. We assume an accelerating structure to be

characterized by the normalized peak energy gain Γ ≡ eV
mec2

it can provide to the bunch and the

phase between the accelerating field and the bunch Φ. With such a simple model the final Lorentz

factor γk of a bunch k, with initial Lorentz factor γ0,k and arrival time tk at the accelerating module

entrance, is [15],

γk = γ0,k + Γk cos(Φk), (1)

where Γk ≡ Γ + δγk is the peak normalized energy gain seen by bunch k and δγk the fluctuation in

field amplitude compared to the average value γ̄ with its ensemble averaging 〈δγk〉 = 0. Similarly

Φk ≡ ω(tk − t̄) + Φ + δφk is the phase between the field and the bunch k, Φ is the set phase, δφk is

the phase error arising from rf-system fluctuation as bunch k is being accelerated, and ωδtk (where

δtk ≡ tk − t̄) represents the contribution to phase error arising from an injection timing error. In

principle, the following parameters can be measured: δtk, Φ with respect to the master oscillator

and the accelerating voltage Γ.

A bunch with time-of-arrival t0,k at the entrance of the accelerating module will have a final

time-of-arrival tk, downstream of the accelerating module, given by

tk = t0,k +

(
1 +

L

γkγ0,k

)
, (2)

where L is the effective accelerating length. For the case of relativistic incoming bunch (γk, γ0,k →
∞), tk ≃ t0,k + L/c and the final time-of-arrival does not contain information on the accelerating

module phase or amplitude jitter. Thus an accurate measurement of the phase between the bunch
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FIG. 1: Overview of the generic system assumed in this paper. The ”accelerating module” is flanked between
a magnetic chicane and a spectrometer (both can be used to measure the energy of the bunch prior and
after the module). A time-of-flight monitor (TOF) can be used to measure the timing of an electron bunch,
BPM refers to beam position monitors and BCM stands for beam current monitor.

and electromagnetic field requires an energy measurement.

Given the measured energy, γk, of a bunch downstream of the accelerating module, the nor-

malized accelerating voltage amplitude, Γk, the relative time-of-arrival δtk, and the measured set

phase Φ, we formally retrieve the phase offset of the bunch k with respect to the field in the cavity

via

δφk ≡ −ωδtk − Φ + arccos

(
γk − γ0,k

Γk

)
. (3)

Practically, uncertainties on the energy measurements might result in
γk−γ0,k

Γk
> 1, especially for

on-crest operation, which would result in complex value of the δφk, such an nonphysical value is

henceforth disregarded. We also note that it might not be generally possible to measure Γk for

each bunch especially when considering consecutive bunches in a high average current linac. We

therefore define the “gradient-averaged” quantity

δφk ≡ −ωδtk − Φ + arccos

(
γk − γ0,k

Γ

)
, (4)

where Γ represents the value of Γk averaged over several bunches. Finally we note that an alter-

native way of retrieving δφk consists in considering the quantity

γ̃0,k = γk − Γk cos(ωδtk + Φ)
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where the quantities on the right-hand-side are all measured. Expliciting γk gives

γ̃0,k = γ0,k + Γk [cos(ωδtk + Φ + δφk) − cos(ωδtk + Φ)] ,

δφk≪1→ γ0,k − Γkδφk sin(ωδtk + Φ), (5)

where a first order Taylor expansion in δφk was used. For each bunch, using Equations 5 and 6,

we can compute the phase offset δφk via:

δφk ≡ −γk + Γk cos(ωδtk + Φ) + γ0,k

Γk sin(ωδtk + Φ)
, (6)

and we can also defined the corresponding “gradient-averaged” quantity as

δφk ≡ −γk + Γ cos(ωδtk + Φ) + γ0,k

Γ sin(ωδtk + Φ)
. (7)

The advantage of the Taylor expansion lies in the absence of inverse trigonometric function.

Ideally a measurement of the phase jitter requires a measurement of γ0,k and γk the energies of

the bunch upstream and downstream of the cryomodule, δtk relative time-of-flight of the bunch

(can be measured upstream or downstream of the cryomodule), Φ the average set phase of the

cryomodule, and Γk the amplitude of the accelerating voltage in the cryomodule˙

Because a measurement of the phase jitter only involves measurements of the first order

moments we ignore single bunch dynamics and consider each bunch to be point-like macroparticle.

Ensemble averaging a series of phase offsets measured for several bunches provide the rms phase

jitter σφ ≡ 〈δφ2
k〉

1/2
. To the four values of δφk defined above (in Eq. 3, 4, 6, and 7), we respectively

associate the rms values σφ, σ
φ
, σφ, and σφ.

III. INFLUENCE OF UPSTREAM JITTER SOURCES

A high-precision measurement of the phase jitter needs to account and disentangle the other

sources of possible jitter. We now considered the accelerator beaming upstream of the accelerating

module to be characterized – henceforth referred to as “injector”. An injector consists of an electron

source and a booster section. We previously hinted that a measurement of the energy of the

bunch prior to entering the accelerating module might be needed. Measuring the beam’s energy
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does not a fortiori require a dispersive section: intercepting diagnostics such as interferometric

transition radiation technique can be used [5]. We however anticipate the use of a dispersive bump

that includes an electromagnetic beam position monitor located at a high dispersion point would

provide a precise, simple, and non-intercepting way of measuring the beam’s energy upstream of

the accelerating module. Such a dispersive bump, also referred to as magnetic chicane, has other

benefits: it can also be used to compress the bunch, e.g. to possibly probe the longitudinal wake

potential of the accelerating structure [7]. A magnetic chicane introduces an energy-dependent

path-length which results in the final time-of-arrival

tk = tk,0 +
R56

c

γ − γref

γref
, (8)

where tk,0 refers to the time-of-arrival at the chicane’s entrance, γref is the reference Lorentz

factor for which the chicane is setup, and R56 is the longitudinal dispersion associated to the

chicane. Therefore the chicane couples an incoming energy jitter to a time jitter because of the

chicane. Thus it is arguable that the magnetic chicane might introduce an intolerable time jitter

which will prevent a precise measurement of the beam/accelerating module phase jitter.

We now on specialize to the photoinjector option for the ILCTA injector. The electron source

is based on a 1+1/2 cell rf cavity (henceforth refer to as rf gun) operating on the TM010,π mode.

An ultraviolet (uv) laser pulse impinges a high quantum efficiency Cesium-Telluride photo-cathode

located on the back plate of the rf-gun. The photoemitted high charge electron bunch has an

energy of ∼ 4 MeV upon exit from the rf-gun. The bunch is then further accelerated by two

booster cavities to a final maximum energy of approximately 40 to 50 MeV depending on the

accelerating structure phases. Besides standards optical element the injector beamline, before

injecting the beam in the accelerating module(s), incorporates a magnetic chicane with longitudinal

dispersion R56 ≃ −20 cm. In Figure 2 we show the time and fractional energy jitter upstream of

the accelerating module for different plausible phase and amplitude rms jitter associated to the

component listed in Table I. For these calculations we assumed all the components phase and

amplitude to have the same rms jitter values.
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FIG. 2: Root mean square (rms) time [(a) and (c)] and Lorentz factor [(c) and (d)] jitters at the the
accelerating structure entrance as a function of the assumed rms jitter for the phase and amplitude associated
to the injector components. The cases of compressor turned off [(a) and (b)] and on [(c) and (d)] are
considered. The numbers associated to isocontours in the left column correspond to the rms time jitter in
picoseconds while those in the right column corresponds to the Lorentz factor jitter and are unit-less. The
same seed for the random number generator was used for all the simulations shown here.

IV. NUMERICAL SIMULATION OF PHASE JITTER MEASUREMENTS

A one-dimensional model of the longitudinal beam dynamics was developed to quickly estimate

the impact of various sources of jitter. The program is based on Matlab [8]. The implementation

of each element is described in the Appendix. The program tracks a series of bunch represented

by macroparticles in the longitudinal phase space (t, γ). The first macroparticle experience the

ideal, jitter free, electric fields while the subsequent ones macroparticles are subject to non ideal

fields due to amplitude and phase jitters. We consider all the phase and amplitude jitters to

follow a Gaussian probability function sand take the ILCTA photoinjector configuration with main

parameters affecting the longitudinal beam dynamics listed in Table I. For the sake of simplicity

we consider all the phase and amplitude jitters associated to the photoinjector components to be

distributed with respective rms values of 2 deg and 1 %.

The accelerating module considered is a standard eight-cavities TESLA type cryomodule. Sim-
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parameter value units

laser launch phase 40 deg

rf gun peak E-field 39 MV/m

cavity 1 peak E-field 25 MV/m

cavity 1 off-crest phase 0 deg

cavity 2 peak E-field 50 MV/m

cavity 2 off-crest phase 0 deg

TABLE I: Proposed parameters for the ILCTA photoinjector option.

ulations of phase jitter measurement were performed for various operating conditions of the ac-

celerating cryomodule. For all cases reported below, the cryomodule maximum energy gain was

200 MeV, a value consistent with 8 cavities operated to provide a 25 MeV energy gain. We as-

sumed the field amplitude jitter in the cryomodule to be 1 % and the phase jitter between the

module field and bunch to be 0.05 deg – a factor 5 below the specified value for the ILC bunch

compressor system [1]. The operating phase of the accelerating module was varied and for each

set point ten randomly independent series of fifty bunches were tracked through the injector and

module thereby experiencing randomly distributed phase and amplitude jitters. The four methods

discussed in Section 2 were implemented to retrieve the ”measured” phase jitters. We also con-

sidered both cases when the magnetic chicane located upstream of the accelerating module (see

Fig. 1) is turned on and off (when on, the chicane enables an energy measurement upstream of the

accelerating module). The results are gathered in Figures 3 and 4 respectively associated to the

two cases of magnetic chicane settings.

The simulations support the use Equations 6 and 7 to retrieve the phase jitter instead of

Equations 3 and 4. A comparison of the bottom rows of Figures 3 and 4 shows that results

obtained when the magnetic chicane is turned on, and the energy upstream of the cryomodule

measured, are more precise over a larger ranges of operating phases. Such a trend is confirmed

in Figure 5 where, for four cases of cryomodule operating phases, the fractional field amplitude

jitter was varied and the measured phase jitter was computed for the the cases of chicane on and

off. For the calculations reported in Figure 5, the “measured” rms jitter, σφ, was obtained using

Equation 6.
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FIG. 3: Retrieved phase jitter when the magnetic chicane is turned on and for an accelerating module rms
fractional jitter of 10−2. Plots (a), (b), (c), and (d) respectively correspond to measured rms phase jitter
based on Equations 3, 4, 6, and 7.

V. OTHER SOURCES OF JITTER

A. Bunch-to-bunch charge fluctuation

To date we have considered time and energy jitters associated to a bunch that are imparted

by external fields. We now consider possible jitter resulting from the bunch self fields. A high

charge (several nC) electron bunch has its dynamics significantly impacted by collective effects

such as space charge and radiative effects. Collective effects depend on the bunch charge which,

over short time scale (comparable to the duration of few rf macropulses) is mainly given by the

photocathode drive laser intensity. If all the bunched had the same charge, the analysis performed

in the previous section would hold even when considering energy losses due to collective effect: the

variance of the measured fractional energy would still be representative of the rms phase jitter –

formally we would have the measured energy to be off the form X = A + Y with 〈Y 〉 = 0 and A

being a constant offset therefore we would have in term of variances 〈X2〉 = 〈Y 2〉.
If the charge varies from bunch to bunch, collective effects might changes the bunch properties
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FIG. 4: Retrieved phase jitter when the magnetic chicane is turned off and for an accelerating module rms
fractional jitter of 10−2. Plots (a), (b), (c), and (d) respectively correspond to measured rms phase jitter
based on Equations 3, 4, 6, and 7.

thereby complicating the phase jitter measurement. Among the various collective effects, we first

note that the longitudinal space charge force results in an energy spread dilution that does not

affect the first order moments of the bunch (i.e. the bunch does not lose or gain energy). The

two main direct sources of charge-induced jitters come from radiative effects: coherent synchrotron

radiation (CSR) and wakefield. If the bunch energy is measured upstream of the accelerating

module the effect of these radiative effects will be included in the incoming jitter measurement

up to the magnetic chicane midpoint. Only the additional energy losses the beam undergoes in

the upstream beamline will need to be evaluated in order to assess the impact of phase jitter

measurement.

We can easily estimate the change in average fractional momentum from Reference [9]

〈δ〉CSR = − Lb

γrefmc2
2e2N

31/3(2π)1/2R2/3σ
4/3
z

∫ +∞

−∞

dze−z2/2σ2
z

∫ z

−∞

dξ

(z − ξ)1/3

d

dξ
e−ξ2/2,

≃ 0.350472
reNLb

γrefR2/3σ
4/3
z

, (9)
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FIG. 5: Retrieved phase jitter as a function of the accelerating module’s fraction amplitude jitter when the
accelerating module phase is Φ = −50 deg (top left), Φ = −10 deg (top right) and Φ = −5 deg (bottom).

where γref is the reference energy, Lb the dipole length, R the radius of curvature of the trajectory,

σz the rms bunch length, N the number of particle per bunch and re the classical radius of

the electron. For our estimate we ignore transient CSR effects. Therefore a the bunch-to-bunch

variation in energy loss will depend upon the bunch-to-bunch charge fluctuation. If the magnetic

chicane is turned on such to measure the energy prior to the accelerating module only the CSR

generated in the two last dipoles will need to be accounted for (both with Lb = 20 cm, R = 0.6 m,

γref ≃ 80). Similarly the energy loss induced in the spectrometer (Lb = 1 m, R = 1 m, γref ≃ 480)

downstream of the accelerator module will also bias the phase jitter measurement.

The other charge-dependent energy jitter source comes from wakefields. We assume the major

source of wakefield to be induced in the accelerating module. Using reference [10], we find the

fractional change in average energy due to the wakefield induced in one eight-cavities TESLA

cryomodule to be

〈δ〉WKF ≃ 135Q

γrefmc2

∫ +∞

−∞

dz
1√

2πσz

e
−

z2

2σ2
z

∫ z

−∞

ds1.165e
−

q

s−z
3.65 − 0.165e

−
s2

2σ2
z , (10)
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where Q has the units of pC in the latter equation The numerical values are obtained from a fit

to time-domain simulations [10]. The energy loss is proportional to the charge per bunch, and

the dependence on the rms bunch length is plotted in Fig. 6. For the nominal bunch parameters

considered herein (σz = 0.3 mm, Q = 3.2 nC), the average energy loss is 0.36 MeV in the acceler-

ating module. This corresponds to an average fractional momentum reduction of 〈δ〉 ≃ 1.28×10−3.

We gather in Table II the mean energy loss in the chicane and accelerating module. In order

to insure the energy loss fluctuation is less than the resolution of the high energy spectrometer we

need to insure that the bunch-to-bunch charge fluctuations to be 〈(∆Q/Q)2〉1/2
< 1 % this would

result in an rms relative total energy loss rms spread of 1 × 10−4.

source value

CSR half chicane 3.87 × 10−3

CSR spectrometer 4.07 × 10−4

wakefield in acc. module 1.28 × 10−3

total loss 5.57 × 10−3

TABLE II: Summary of coherent synchrotron radiation- and wakefield-induced energy loss downstream of
the chicane’s energy measurement station.

We now turn to specifying the charge fluctuation. In a photoinjector, the bunch charge depends

on the photocathode drive laser intensity and on the electric field applied on the photocathode.

The dependence on the electric field on the photocathode comes from the Schottky effect (tunneling

effect). Considering Cesium Telluride photocathode the Schottky effect can be parametrized as

Q[nC] ∝ Q0(1 + 0.01)Ecath [MV/m], where Ecath refers to the electric field (including both rf and

space charge contributions) on the photocathode surface [11] and Q0 = 2.875 nC was obtained

from a series of calculations with Astra [12]. The field associated to the 1+1/2 cell ILCTA rf gun,

along with the nominal photocathode drive laser settings (rms spot size on the photocathode of

1.4 mm and time profile consisting of four stacked Gaussian pulses with 2 ps duration each), were

used as input in the Astra computer model. For changes in the electric field amplitude within

E ∈ [38, 40] MV/m, the relative variation of charge is found to be ∼ 1.5 %. The total fraction rms
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charge jitter is therefore given by

〈(∆Q/Q)2〉1/2
=


〈(∆Q0/Q0)

2〉 +

(
0.02

E−1

cath + 0.02

)2

〈(∆E/E)2〉




1/2

≃
[
〈(∆Q0/Q0)

2〉 + 4.4 × 10−3〈(∆E/E)2〉
]1/2

, (11)

showing that the charge fluctuation is mainly dominated by laser intensity fluctuation: for pes-

simistic rms E-field relative amplitude jitter of ∼ 5 % the contribution from E-field is of the order

of 10−3. Therefore the specified charge jitter essentially translates into laser intensity jitter: the

rms laser intensity jitter should not exceed ∼ 1 %.
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FIG. 6: Dependence of the wakefield-induced energy loss in a cryomodule (accounting only for geometric
wakes induced by the shape of TESLA cavities) versus rms bunch length. The bunch is assumed to have a
Gaussian longitudinal distribution and the charge per bunch is 3.2 nC.

B. Bunch-to-bunch pointing stability

Both monopole and dipole modes long range wakefields were also considered and found to result

in negligible energy change – well below the resolution of our energy measurements. Finally another

source of energy jitter coming from the radial dependence of the axial electric field in the TESLA

cavity was investigated. From Maxwell’s equation it can be shown that the off-axis expansion of

the axial Ez(z, r) field for a TM010-mode cavity is given by

Ez(z, r) =

[
1 − r2

4

(
1 − ∂2

z − ∂2
t

c2

)]
Ez(z, r = 0), (12)
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where Ez(z, 0) is the axial electric field and r the considered radial offset. This effect was evaluated

using Astra simulations and found to be insignificant (a particle with a 1 cm offset with respect to

the cavity axis has its energy gain decreased by less than 1 keV compared to a particle accelerated

on the cavity axis. Therefore there seems to be no specific requirement on the bunch-to-bunch

pointing stability apart from those imposed by the single bunch beam dynamics.

VI. INSTRUMENTAL EFFECTS

In the previous Sections we did not address the consequences of instrumental errors on the

time and energy measurements. We now consider these uncertainties in details and investigate

the needed resolutions. State-of-the-art timing measurement are performed via electro-optical

sampling techniques with sub-100 fs resolution [13, 14]. The energy measurement needs further

analysis. Typically, and energy measurement consists of three beam position measurements: one

measurement in a dispersive section and two others in an upstream (or downstream) dispersion-less

region. The fractional energy offset, δ, with respect to the reference energy for which the dipoles

in the dispersive section are set, is then given by

〈δ〉 =
〈x〉 − (R11〈x0〉 +R12〈x′0〉)

R16

, (13)

where the R are the transfer matrix element from a position upstream the dispersive section. The

error on energy measurement is therefore:

∆〈δ〉 =
∆〈x〉 + |R11∆〈x0〉| + |R12∆〈x′0〉|

|R16|
, (14)

If we consider a beam position monitor with resolution of 100 µm, we estimate the energy resolution

to be of the order of 5 × 10−4 to 1 × 10−3. In Figure 7 we consider the case of the accelerating

module operated with Φ = −50 deg and investigate the effects of resolution on the phase and

energy measurements on the retrieved value for the phase jitter. Similar simulations for other

cryomodule operating phase yield the same conclusion.

VII. SUMMARY

We performed an analysis of beam-based measurement of absolute phase jitter between an ac-

celerating structure and a relativistic electron bunch. Our analysis included phase and energy
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FIG. 7: Retrieved phase jitter as a function of uncertainty on the fractional energy measurement (both after
and before the accelerating module) for four cased of resolution on time measurement of 50 (a), 100 (b), 200
(c) and 400 (d) femtosecond. For these simulations the accelerating module phase is set to Φ = −20 deg.
The energy resolution correspond to the chicane and the high energy spectrometer is assumed to have a
lower resolution by a factor 3.

jitter upstream of the to-be-characterized accelerating module. Our conclusions are as follows. An

energy measurement upstream of the accelerating module is needed in order to increase the resolu-

tion of the phase jitter measurement. The most straightforward energy measurement technique is

to install a magnetic chicane (which can also serve other purposes). We also analyzed jitter coming

from bunch-to-bunch charge fluctuations via collective effects (coherent synchrotron radiation and

geometric wakefields for the example of a TESLA-type cryomodule) and found the bunch-to-bunch

charge fluctuation should be maintained below 1 % (rms). Considering Schottky emission effect at

the cathode we found that the requirement on bunch-to-bunch charge jitter directly translate into

a requirement on the photocathode drive laser intensity which should be stabilized within 1 %. We

however note that an alternative solution would be to monitor the charge of each bunch (using a

beam current monitor; see Figure 1) and infer phase jitter values from a set of timing and energy
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measurements within a defined bunch charge window.
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Appendix: Description of the one-dimensional longitudinal dynamics model

A one dimensional model was developed to quickly estimate the impact of various sources of

jitter on the longitudinal beam dynamics. The model is a matlab-based program. The imple-

mentation of each element is described in the following subsections. The program tracks a series

of bunch represented by macroparticle in the longitudinal phase space (t, γ).

A. Photocathode drive-laser and rf-gun

Neglecting intensity fluctuations, the laser can only affect the longitudinal beam dynamics via

its phase. The rf gun settings is described by two parameters: the E-field amplitude and phase

between the laser and E-field. These two parameters set the initial conditions and the longitudinal

motion is described by the system of coupled first order ordinary differential equations

dψ

dz
= k

(
γ√
γ2 − 1

− 1

)
,

dγ

dz
= 2αkÊz sin(ψ + kz),

where α ≡ eE0

2kmc2
is the normalized accelerating field [6], E0 is the peak E-field, k ≡ 2π

λ and Êz(z)

is the normalized on-axis E-field obtained from, e.g., Superfish simulations. There is generally

no closed-form solution of such a system, and the equations of motion are generally numerically

integrated. In [6] an approximate solution is derived using the method of successive approximation

and a bunch compression factor is inferred but this leads to large error on the time calculation

and to non physical values of the analytically computed compression factor. Therefore we chose to

numerically integrate the longitudinal motion using a fourth order Runge-Kutta. Am example of

such numerical integration showing the sensitivity, at the gun exit, of the time of flight and energy

of a bunch as a function of the gun amplitude and laser launch phase is presented in Fig. 8.

B. Drift spaces

In the absence of radiation process, the bunch total energy remains constant in a drift. The time-

of-flight of the bunch depends on the bunch energy via t = L
v = L

c

[
1 − 1

γ2

]−1/2

. The transformation
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FIG. 8: Sensitivities of the phase (left) and γ Lorentz factor (right) at the rf-gun exit as a function of the
laser launch phase φ and rf-gun E-field relative amplitude jitter ∆E/E. The phase jitter unit is degree and
the Lorentz factor is dimensionless.

through a drift is therefore

tf = t0 +
L

c

(
1 +

1

2γ2

)
,

γf = γ0.

For electrons this is a noticeable effect only at low energy (e.g. in the drift from the rf gun to the

cavity entrance). At low energy the drift can map an energy jitter into a time jitter.

C. Accelerating cavities

A cavity changes both the beam energy and can introduce an energy dependent time-of-flight.

Given a bunch initial longitudinal coordinates (t0, γ0), the final coordinate are:

tt = t0 +
Lacc

c

(
1 +

1

2

1

γ0γf

)

γf = γ0 + Γ cos(ωt0 + Φ),

where Γ and Φ are the operating voltage and phase of the accelerating section, and Lacc the effective

length of the accelerating structure.

D. bunch compressor chicane

The chicane consists of four dipole magnets; see Fig. 9. The energy of a bunch is unaffected

(ignoring synchrotron radiation), and the time-of-flight can be deduced from simple geometric

arguments: the path length is given by L = 4LB
θ

sin θ + Li + 2 L0

cos θ where θ is a function of γ. The
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coordinate of a bunch are mapped accordingly to

tf = t0 +
1

c

(
4LB

θ

sin θ
+ Li + 2

L0

cos θ

)

γf = γ0,

where θ = arcsin
(

γnom

γ sin θnom

)
with θnom corresponding to the nominal bending angle for the

nominal bunch energy.

Lo

Li

LB

FIG. 9: Bunch compressor chicane model used in the simulations.


